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Abstract
This topical review describes the methodology of continuum variational and diffusion quantum
Monte Carlo calculations. These stochastic methods are based on many-body wavefunctions
and are capable of achieving very high accuracy. The algorithms are intrinsically parallel and
well suited to implementation on petascale computers, and the computational cost scales as a
polynomial in the number of particles. A guide to the systems and topics which have been
investigated using these methods is given. The bulk of the article is devoted to an overview of
the basic quantum Monte Carlo methods, the forms and optimization of wavefunctions,
performing calculations under periodic boundary conditions, using pseudopotentials,
excited-state calculations, sources of calculational inaccuracy, and calculating energy
differences and forces.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

The variational Monte Carlo (VMC) and diffusion Monte
Carlo (DMC) methods are stochastic approaches for evaluating
quantum mechanical expectation values with many-body
Hamiltonians and wavefunctions [1]. VMC and DMC methods
are used for both continuum and lattice systems, but here we
describe their application only to continuum systems. The
main attraction of these methods is that the computational cost
scales as some reasonable power (normally from the second to
fourth power) of the number of particles. This scaling makes it
possible to deal with hundreds or even thousands of particles,
allowing applications to condensed matter.

Continuum quantum Monte Carlo (QMC) methods, such
as VMC and DMC, occupy a special place in the hierarchy
of computational approaches for modelling materials. QMC
computations are expensive, which limits their applicability
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at present, but they are the most accurate methods known
for computing the energies of large assemblies of interacting
quantum particles. There are many problems for which the
high accuracy achievable with QMC is necessary to give a
faithful description of the underlying science. Most of our
work is concerned with correlated electron systems, but these
methods can be applied to any combination of fermion and
boson particles with any inter-particle potentials and external
fields etc. Being based on many-body wavefunctions, these
are zero-temperature methods, and for finite temperatures one
must use other approaches such as those based on density
matrices.

Both the VMC and DMC methods are variational, so that
the calculated energy is above the true ground-state energy.
The computational costs of VMC and DMC calculations scale
similarly with the number of particles studied, but the prefactor
is larger for the more accurate DMC method. QMC algorithms
are intrinsically parallel and are ideal candidates for taking
advantage of the petascale computers (1015 flops) which are
becoming available now and the exascale computers (1018

flops) which will be available one day.
DMC has been applied to a wide variety of continuum

systems. A partial list of topics investigated within DMC and
some references to milestone papers are given below.

• Three-dimensional electron gas [2–5].
• Two-dimensional electron gas [6–9].
• The equation of state and other properties of liquid

3He [10, 11].
• Structure of nuclei [12].
• Pairing in ultra-cold atomic gases [13–15].
• Reconstruction of a crystalline surface [16] and molecules

on surfaces [17, 18].
• Quantum dots [19].
• Band structures of insulators [20–22].
• Transition metal oxide chemistry [23–25].
• Optical band gaps of nanocrystals [26, 27].
• Defects in semiconductors [28–30].
• Solid-state structural phase transitions [31].
• Equations of state of solids [32–35].
• Binding of molecules and their excitation energies

[36–40].
• Studies of exchange–correlation [41–44].

The same basic QMC algorithm can be used for each of the
applications mentioned above with only minor modifications.
The complexity and sophistication of the computer codes arises
not from the algorithm itself, which is in fact quite simple,
but from the diversity of the Hamiltonians and many-body
wavefunctions which are involved. A number of computer
codes are currently available for performing continuum QMC
calculations of the type described here [45]. We have
developed the CASINO code [46], which can deal with systems
of different dimensionalities, various interactions including the
Coulomb potential, external fields, mixtures of particles of
different types and different types of many-body wavefunction.

The VMC and DMC methods are described in section 2
and the types of many-body wavefunction we use are described
in section 3. The optimization of parameters in wavefunctions

using stochastic methods which are both subtle and unique
to the field is described in section 4. QMC calculations
within periodic boundary conditions are described in section 5,
the use of pseudopotentials in QMC calculations is discussed
in section 6 and excited-state DMC calculations are briefly
described in section 7. The scaling of the QMC methods with
system size is discussed in section 8. Sources of errors in
the DMC method and practical methods for handling errors
in QMC results are described in section 9. In section 10 we
describe how to evaluate other expectation values apart from
the energy. Section 11 deals with the calculation of energy
differences and energy derivatives in the VMC and DMC
methods, and we make our final remarks in section 12.

2. Quantum Monte Carlo methods

The VMC method is conceptually very simple. The energy
is calculated as the expectation value of the Hamiltonian with
an approximate many-body trial wavefunction. In the more
sophisticated DMC method the estimate of the ground-state
energy is improved by performing a process described by the
evolution of the wavefunction in imaginary time. Throughout
this paper we will consider only systems with spin-independent
Hamiltonians and collinear spins. We will also restrict the
discussion to systems with time-reversal symmetry, for which
the wavefunction may be chosen to be real. It is, however,
straightforward to generalize the VMC algorithm to work with
complex wavefunctions, and only a little more complicated to
generalize the DMC algorithm to work with them [47].

2.1. The VMC method

The variational theorem of quantum mechanics states that, for
a real, proper1 trial wavefunction �T, the variational energy,

EV =
∫
�T(R)Ĥ�T(R) dR

∫
�2

T(R) dR
, (1)

is an upper bound on the exact ground-state energy E0, i.e.,
EV � E0. In equation (1), Ĥ is the many-body Hamiltonian
and R denotes a 3N-dimensional vector of particle coordinates.
As discussed in section 3.1, the spin variables in equation (1)
are implicitly summed over.

To facilitate the stochastic evaluation, EV is written as

EV =
∫

p(R)EL(R) dR, (2)

where the probability distribution p is

p(R) = �2
T(R)∫

�2
T(R′) dR′ , (3)

1 The trial wavefunction �T should have the correct symmetry under particle
exchange, the first derivative should be continuous everywhere except where
the potential is infinite and the integrals

∫
�2

T dR and
∫
�T Ĥ�T dR must exist.

In addition, to obtain a reasonable estimate of the error in the energy, it is
desirable that

∫
�T Ĥ 2�T dR exists.
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and the local energy,

EL(R) = �−1
T Ĥ�T. (4)

is straightforward to evaluate at any R.
In VMC the Metropolis algorithm [48] is used to

sample the probability distribution p(R). Let the electron
configuration at a particular step be R′. A new configuration
R is drawn from the probability density T (R ← R′), and the
move is accepted with probability

A(R ← R′) = min

{

1,
T (R′ ← R)�2

T(R)

T (R ← R′)�2
T(R′)

}

. (5)

It can easily be verified that this algorithm satisfies the detailed
balance condition

�2
T(R)T (R

′ ← R)A(R′ ← R)

= �2
T(R

′)T (R ← R′)A(R ← R′). (6)

Hence p(R) is the equilibrium configuration distribution of this
Markov process and, so long as the transition probability is
ergodic (i.e., it is possible to reach any point in configuration
space in a finite number of moves), it can be shown that
the process will converge to this equilibrium distribution.
Once equilibrium has been reached, the configurations are
distributed as p(R), but successive configurations along the
random walk are in general correlated.

The variational energy is estimated as

EV � 1

M

M∑

i=1

EL(Ri), (7)

where M configurations Ri have been generated after
equilibration. The serial correlation of the configurations and
therefore local energies EL(Ri) complicates the calculation of
the statistical error on the energy estimate: see section 9.2.
Other expectation values may be evaluated in a similar manner
to the energy.

Equation (2) is an importance sampling transformation of
equation (1). Equation (2) exhibits the zero variance property:
as the trial wavefunction approaches an exact eigenfunction
(�T → φi ), the local energy approaches the corresponding
eigenenergy, Ei , everywhere in configuration space. As �T

is improved, EL becomes a smoother function of R and the
number of sampling points, M , required to achieve an accurate
estimate of EV is reduced.

VMC is a simple and elegant method. There are no
restrictions on the form of trial wavefunction which can be used
and it does not suffer from a fermion sign problem. However,
even if the underlying physics is well understood it is often
difficult to prepare trial wavefunctions of equivalent accuracy
for two different systems, and therefore the VMC estimate
of the energy difference between them will be biased. We
use the VMC method mostly to optimize parameters in trial
wavefunctions (see section 4) and our main calculations are
performed with the more sophisticated DMC method, which is
described in section 2.2.

2.2. The DMC method

In DMC the operator exp(−t Ĥ ) is used to project out the
ground state from the initial state. This can be viewed as
solving the imaginary-time Schrödinger equation, which for
electrons is

− ∂

∂ t
�(R, t) = (Ĥ − ET)�(R, t)

= (− 1
2∇2

R + V (R)− ET
)
�(R, t), (8)

where t is a real variable measuring the progress in imaginary
time, V is the potential energy (assumed to be local for the
time being), and ET is an arbitrary energy offset known as
the reference energy. Throughout this article we use Hartree
atomic units where me = h̄ = |e| = 4πε0 = 1, where me is
the mass of the electron and e is its charge. Equation (8) can
be solved formally by expanding �(R, t) in the eigenstates φi

of the Hamiltonian,

�(R, t) =
∑

i

ci (t)φi(R), (9)

which leads to

�(R, t) =
∑

i

exp[−(Ei − ET)t]ci(0)φi(R). (10)

For long times one finds

�(R, t → ∞) � exp[−(E0 − ET)t]c0(0)φ0(R), (11)

which is proportional to the ground-state wavefunction, φ0.
The Hamiltonian is the sum of kinetic and potential terms:
Ĥ = −(1/2)∇2

R + V (R). Suppose for a moment that we
can interpret the initial state,

∑
i ci(0)φi , as a probability

distribution. If we neglect the potential term then the
imaginary-time Schrödinger equation (8) reduces to a diffusion
equation in the configuration space. If, on the other
hand, we neglect the kinetic term, (8) reduces to a rate
equation. It should not be surprising that a short time slice
of the imaginary-time evolution can be simulated by taking
a population of configurations {Ri } and subjecting them to
random hops to simulate the diffusion process, and ‘birth’
and ‘death’ of configurations to simulate the rate process. By
‘birth’ and ‘death’ we mean replicating some configurations
and deleting others at the appropriate rates, a process which is
often referred to as ‘branching’.

Unfortunately the wavefunction cannot in general be
interpreted as a probability distribution. A wavefunction
for two or more identical fermions must have positive and
negative regions, as should an excited state of any system.
One can construct algorithms which are formally exact using
two distributions of configurations with positive and negative
weights [49], but they are inefficient and the scaling of the
computational cost with system size is unclear.

The fixed-node approximation [50, 51] provides a way
to evade the sign problem. (In a 3D system, the nodal
surface is the (3N − 1)-dimensional surface on which the
wavefunction is zero and across which it changes sign.)
The fixed-node approximation is equivalent to placing an
infinite repulsive potential barrier on the nodal surface of the
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trial wavefunction which is sufficiently strong to force the
wavefunction to be zero on the nodal surface. In effect we solve
the Schrödinger equation exactly within each pocket enclosed
by the nodal surface, subject to the boundary condition that
the wavefunction is zero on the nodal surface. The infinite
repulsive potential barrier has no effect if the trial nodal surface
is placed correctly but, if it is not, the energy is always raised.
It follows that the DMC energy is always less than or equal to
the VMC energy with the same trial wavefunction, and always
greater than or equal to the exact ground-state energy.

The fixed-node DMC algorithm described above is ex-
tremely inefficient and a vastly superior algorithm can be
obtained by introducing an importance sampling transforma-
tion [52, 53]. Consider the mixed distribution,

f (R, t) = �T(R)�(R, t), (12)

which has the same sign everywhere if and only if the nodal
surface of �(R, t) equals that of �T(R). Substituting in
equation (8) for � we obtain

− ∂ f

∂ t
= −1

2
∇2

R f + ∇R · [v f ] + [EL − ET] f, (13)

where the 3N-dimensional drift velocity is defined as

v(R) = �−1
T (R)∇R�T(R). (14)

The three terms on the right-hand side of equation (13)
correspond to diffusion, drift and branching processes,
respectively. The importance sampling transformation has
several consequences. First, the density of configurations is
increased where |�T| is large, so that the more important parts
of the wavefunction are sampled more often. Second, the rate
of branching is now controlled by the local energy which is
normally a much smoother function than the potential energy.
This is particularly important for the Coulomb interaction,
which diverges when particles are coincident. The importance
sampling transformation, together with an algorithm that
imposes f (R, t) � 0, ensures that �T and �(R, t) have the
same nodal surfaces, as can be seen in equation (12). The
importance sampling transformation also reduces the statistical
error bar on the estimate of the energy and leads to a zero
variance property analogous to that in VMC.

The importance-sampled imaginary-time Schrödinger
equation may be written in integral form:

f (R, t) =
∫

G(R ← R′, t − t ′) f (R′, t ′) dR′, (15)

where the Green’s function G(R ← R′, t − t ′) is a solution of
equation (13) satisfying the initial condition G(R ← R′, 0) =
δ(R−R′). The exact Green’s function can be sampled using the
Green’s function Monte Carlo (GFMC) algorithm developed
by Kalos and co-workers [54, 55, 53, 56, 57].

Let us interpret f (R, t) as the probability distribution of a
discrete population of P configurations with positive weights:

f (R, t) =
〈 P∑

p=1

wp(t) δ[R − Rp(t)]
〉

, (16)

where the pth configuration at time t has position Rp(t)
in configuration space and weight wp(t), and the angled
brackets denote an ensemble average. Using equation (15), the
evolution of f (R, t) to time t + τ yields

f (R, t + τ ) =
〈 P∑

p=1

wp(t)G[R ← Rp(t), τ ]
〉

=
〈 P∑

p=1

wp(t + τ )δ[R − Rp(t + τ )]
〉

. (17)

The dynamics of the configurations and their weights is
governed by the Green’s function.

The GFMC algorithm is computationally expensive,
but considerably faster calculations can be made using an
approximate Green’s functions which becomes exact in the
limit of infinitely small time steps. Within the short time
approximation

G(R ← R′, τ ) � Gst(R ← R′, τ )
= GD(R ← R′, τ )GB(R ← R′, τ ), (18)

where

GD(R ← R′, τ ) = 1

(2πτ)3N/2
exp

(

−[R − R′ − τv(R′)]2

2τ

)

(19)
is the drift-diffusion Green’s function and

GB(R ← R′, τ ) = exp

(

−τ
2
[EL(R)+ EL(R′)−2ET]

)

(20)

is the branching factor.
The process described by GD(R ← R′, τ ) is simulated by

making each configuration R′ in the population drift through
a distance τv(R′), then diffuse by a random distance drawn
from a Gaussian distribution of variance τ . Each configuration
is then copied or deleted in such a fashion that, on average,
GB(R ← R′, τ ) configurations continue from the new position
R. When using the short time approximation, configurations
occasionally attempt to cross the nodal surface but such moves
may simply be rejected. The short time approximation leads to
a dependence of DMC results on the time step. It is important
to investigate the size of the time-step dependence, and it is
common practice to extrapolate the energy to zero time step:
see figure 5. It turns out that Gst does not precisely satisfy
the detailed balance condition, but it is standard practice to
reinstate detailed balance by incorporating an accept–reject
step. The importance-sampled fixed-node fermion DMC
algorithm was first used by Ceperley and Alder in their ground-
breaking study of the homogeneous electron gas (HEG) [2].

It can be seen that the reference energy ET appears in the
branching factor of equation (20). By adjusting the reference
energy during the simulation we may keep the total population
close to a target value, preventing the population from either
increasing exponentially or dying out. An example of the
behaviour of the total population and the reference energy can
be seen in figure 1 [1].

Another important aspect of practical implementations
is that the particles are normally moved one at a time in
both VMC and DMC algorithms. The trial wavefunction
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Figure 1. DMC data for a silane (SiH4) molecule, with the ions
represented by pseudopotentials. The upper panel shows the
fluctuations in the population of configurations arising from the
branching process used to simulate equation (20). The reference
energy, ET, is altered during the run to control the population.
Specifically, the reference energy is set to return the population to the
target population (12800 configurations) on the same timescale as the
autocorrelation period of the energy data [1]. The total energy is
shown in the lower panel as a function of the move number. The
black line shows the instantaneous value of the local energy averaged
over the current population of configurations, the red line is the
reference energy ET and the green line is the best estimate of the
DMC energy as the simulation progresses. The configurations at
move number zero are from the output of a VMC simulation, and the
energy decays rapidly from its initial VMC value of about
−6.250 au and reaches a plateau with a DMC energy of about
−6.305 au. The data up to move 1000 are deemed to form the
equilibration phase, and are discarded.

can usually be evaluated more rapidly when a single particle
has been moved than if all particles have been moved, and a
longer time step can be employed for an equivalent time-step
error. The correlation length of the local energy is shorter for
single-particle moves and overall the efficiency is considerably
increased [58].

The initial configurations are normally taken from a VMC
calculation and equilibrated within DMC for a period of
imaginary time. The importance-sampled DMC algorithm
generates configurations asymptotically distributed according
to f (R) = �T(R)φ0(R), where φ0 is the ground state of
the Schrödinger equation subject to the fixed-node boundary
condition. Noting that Ĥφ0 = E0φ0 everywhere (except on
the nodal surface where φ0 = 0) the fixed-node DMC energy
can be evaluated using the formula

ED ≡ E0 = 〈φ0|Ĥ |�T〉
〈φ0|�T〉 =

∫
f (R)EL(R) dR
∫

f (R) dR
(21)

� 1

M

M∑

i=1

EL(Ri). (22)

Some example DMC data are shown in figure 1.

3. Trial wavefunctions

Trial wavefunctions are of central importance in VMC
and DMC calculations because they introduce importance
sampling and control both the statistical efficiency and
accuracy obtained. The accuracy of a DMC calculation
depends on the nodal surface of the trial wavefunction via
the fixed-node approximation, while in VMC the accuracy
depends on the entire trial wavefunction. VMC energies are
therefore more sensitive to the quality of the trial wavefunction
than DMC energies.

3.1. Slater–Jastrow wavefunctions

QMC calculations require a compact trial wavefunction which
can be evaluated rapidly. Most studies of electronic systems
have used the Slater–Jastrow form, in which a pair of up- and
down-spin determinants is multiplied by a Jastrow correlation
factor,

�SJ(R) = eJ (R) det [ψn(r
↑
i )] det [ψn(r

↓
j )], (23)

where eJ is the Jastrow factor and det [ψn(r
↑
i )] is a determinant

of single-particle orbitals for the up-spin electrons. The
quality of the single-particle orbitals is very important, and
they are often obtained from density functional theory (DFT)
or Hartree–Fock (HF) calculations. Note that the spin
variables themselves do not appear in equation (23). Formally
the sum over spin variables in the expectation values in
equations (1) and (21) has already been performed and the
single determinant with spin variables is replaced by two
determinants of up-and down-spin orbitals whose arguments
are the up- and down-spin electron coordinates R↑ and R↓,
respectively. This is explained in more detail in [1].

The Jastrow factor is taken to be symmetric under the
interchange of identical particles and its positivity means that
it does not alter the nodal surface of the trial wavefunction.
The Jastrow factor introduces correlation by making the
wavefunction depend explicitly on the particle separations.
The optimal Jastrow factor is normally small when particles
with repulsive interactions (for example, two electrons) are
close to one another and large when particles with attractive
interactions (for example, an electron and a positron) are close
to one another.

The Jastrow factor can also be used to ensure that the
trial wavefunction obeys the Kato cusp conditions [59], which
leads to smoother behaviour in the local energy EL(R). When
two particles interacting via the Coulomb potential approach
one another, the potential energy diverges, and therefore the
exact wavefunction � must have a cusp so that the local
kinetic energy −(1/2)�−1∇2� supplies an equal and opposite
divergence. It seems very reasonable to enforce the cusp
conditions on trial wavefunctions because they are obeyed by
the exact wavefunction. Imposition of the cusp conditions is
in fact very important in both VMC and DMC calculations
because divergences in the local energy lead to poor statistical
behaviour and even instabilities in DMC calculations due to
divergences in the branching factor.

5
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Figure 2. Local energy of a silane (SiH4) molecule from a VMC
calculation (a) using a Slater-determinant trial wavefunction and
(b) including a Jastrow factor.

Figure 2 shows the local energies generated during two
VMC runs for a silane molecule in which the Si4+ and H+
ions are described by smooth pseudopotentials. In figure 2(a)
the trial wavefunction consists of a product of up- and down-
spin Slater determinants of molecular orbitals. The Kato cusp
conditions for electron–electron coalescences are therefore not
satisfied and the local energy shows very large positive spikes
when two electrons are close together. Figure 2(b) shows the
effect of adding a Jastrow factor which satisfies the electron–
electron cusp conditions. The large positive spikes in the local
energy are removed and the mean energy is lowered. Some
small spikes remain, and the frequency and size of the positive
and negative spikes are roughly equal. These spikes arise
from electrons approaching the nodes of the trial wavefunction,
where the local kinetic energy diverges positively on one side
of the node and negatively on the other side.

The basic Jastrow factor that we use for systems of
electrons and ions contains the sum of homogeneous, isotropic
electron–electron terms u, isotropic electron–nucleus terms χ
centred on the nuclei and isotropic electron–electron–nucleus
terms f , also centred on the nuclei [60]. We use a Jastrow
factor of the form exp[J (R)], where

J ({ri}, {rI }) =
N∑

i> j

u(ri j)+
Nions∑

I=1

N∑

i=1

χI (ri I )

+
Nions∑

I=1

N∑

i> j

f I (ri I , r j I , ri j), (24)

N is the number of electrons, Nions is the number of ions,
ri j = ri − r j , ri I = ri − rI , ri is the position of electron
i and rI is the position of nucleus I . The functions u, χ
and f are represented by power expansions with optimizable
coefficients. Different coefficients are used for terms involving
different spins. Note that, even if the determinant part of the
Slater–Jastrow wavefunction is an eigenfunction of the spin
operator Ŝ2, the use of different coefficients for parallel-spin
and antiparallel-spin pairs of electrons generally leads to a trial
wavefunction that is not an eigenfunction of Ŝ2.

Figure 3. The difference between the VMC energy and the exact
ground-state energy against the variance of the VMC local energies
on logarithmic scales for H2 at a bond length of 1.397 453 au
obtained using Jastrow factors of increasing complexity. ‘HF’
indicates a wavefunction consisting of a molecular orbital obtained
from a Hartree–Fock calculation and ‘e–e–N’ denotes a term in the
Jastrow factor involving the three distances between two electrons
and one proton, etc.

When using periodic boundary conditions, we often add
a plane-wave term in the electron–electron separations, p(ri j),
which describes similar sorts of correlation to the u term. The
u(ri j) term, however, is cut off at a distance less than or equal
to the Wigner–Seitz radius of the simulation cell, and the p
term adds variational freedom in the corners of the simulation
cell. Occasionally we add a plane-wave expansion in electron
position, q(ri), and also occasionally add three-body electron–
electron–electron terms.

We have recently developed a more general form of
Jastrow factor [61] which allows the inclusion of higher-order
terms than those of equation (24), such as terms involving
the distances between four or more particles. An example of
the application of such a Jastrow factor to the H2 molecule is
shown in figure 3. The molecular orbital was calculated within
Hartree–Fock theory and VMC calculations were performed
including Jastrow factors of increasing complexity. The
Jastrow factor of equation (24) includes electron–nucleus (e–
N etc), e–e and e–e–N terms, but the additional reductions
in energy from including the e–N–N and e–e–N–N terms are
clearly visible in figure 3.

3.2. Pairing wavefunctions

Slater–Jastrow wavefunctions are not appropriate for all
systems. For example, the strongly attractive interaction
between electrons and holes within an effective-mass theory
leads to the formation of excitons, which are not well described
by a Slater–Jastrow wavefunction. A more appropriate
wavefunction [62] is formed from the antisymmetrized product
of identical electron–hole pairing functions ψ , multiplied by a

6
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Figure 4. Effect of the motion of an electron (moving parallel to the
arrow, which shows the direction of motion) on the
backflow-transformed coordinates of three opposite-spin electrons.
Circles with the same shade correspond to the same instant in the
motion.

Jastrow factor,

�SP(R) = eJ (R) det [ψ(r↑
i , r↓

j )]. (25)

It is also possible to include additional orbitals for unpaired
particles within this wavefunction.

3.3. Multi-determinant wavefunctions

Multi-determinant expansions have been used with consider-
able success over many decades within the quantum chemistry
community. The trial wavefunction can be written as

�MD(R) = eJ (R)
∑

n

cn det [ψn(r
↑
i )] det [ψn(r

↓
j )], (26)

where the cn are coefficients. This method provides a
systematic approach to improving the trial wavefunction,
and there have been numerous applications of multi-
determinant trial wavefunctions in QMC calculations for small
molecules [63–65]. Such trial wavefunctions can capture
near-degeneracy effects (also known as static correlation).
Multi-determinant wavefunctions are not in general suitable
for large systems because the number of determinants required
to retrieve a given fraction of the correlation energy increases
exponentially with system size. An exception to this occurs if
only a small region of the system requires a multi-determinant
description. An example of a DMC calculation of this type
is the study of the electronic states formed by the strongly
interacting dangling bonds at a neutral vacancy in diamond by
Hood et al [29].

3.4. Backflow wavefunctions

Additional correlation effects can be incorporated in the
trial wavefunction using backflow transformations [66, 67].

Figure 5. DMC energy against time step for a 64-electron
ferromagnetic 2D hexagonal Wigner crystal at density parameter
rs = 50 au with a Slater–Jastrow wavefunction. The solid line is a
linear fit to the data.

Consider a solid ball falling through a classical liquid. The
incompressible liquid is pushed out of the way and it fills in
behind the ball to form a characteristic flow pattern. One can
imagine that similar correlations occur as a quantum particle
moves through a quantum fluid, as shown in figure 4. Much
of this correlation can be captured in a Jastrow factor which,
however, preserves the nodal surface of the wavefunction. The
backflow motion gives an additional contribution which leaves
its imprint on the nodes. Quantum backflow was discussed by
Feynman and co-workers [66, 67] for excitations in 4He and
the effective mass of a 3He impurity in liquid 4He. Backflow
wavefunctions have been used successfully in QMC studies
of liquid He [68, 11], the electron gas [69, 70, 4], hydrogen
systems [33], and various inhomogeneous systems [58, 71, 72].

The backflow wavefunctions we use [58] can be written as

�BF(R) = eJ (R) det [ψi(r
↑
i + ξ i (R))] det [ψi(r

↓
j + ξ j (R))].

(27)
For a system of N electrons and Nion classical ions we write
the backflow displacement for electron i in the form

ξ i =
N∑

j =i

ηi j ri j +
Nion∑

I

μi I ri I +
N∑

j =i

Nion∑

I

(�
j I
i ri j + j I

i ri I ). (28)

In this expression ηi j = η(ri j) is a function of electron–
electron separation, μi I = μ(ri I ) is a function of electron–
ion separation, and �

j I
i = �(ri I , r j I , ri j ) and 

j I
i =

(ri I , r j I , ri j). We parameterize the functions η, μ, � and
 using power expansions with optimizable coefficients [58].

3.5. Other wavefunctions

The wavefunction types of equations (23), (25)–(27) can be
combined in various ways within the CASINO code [46] so
that, for example, it is possible to use Slater–Jastrow-pairing-
backflow wavefunctions, etc. Of course the range of possible
wavefunctions could be extended by, for example, including
Pfaffian wavefunctions [73, 74], etc.

7
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4. Optimization of trial wavefunctions

Optimizing trial wavefunctions is a very important part of
QMC calculations which can consume large amounts of human
and computing resources. With modern stochastic methods
it is possible to optimize hundreds or even thousands of
parameters in the wavefunction. The parameters which can be
optimized include those in the Jastrow factor, the coefficients
of determinants in a multi-determinant wavefunction, the
parameters in the backflow functions and the parameters in
single particle and pairing orbitals.

The trial wavefunction used in a DMC calculation should
ideally be optimized within DMC, but reliable and efficient
methods to achieve this are still under development [75, 76].
Minimization of the DMC energy has been performed ‘by
hand’ for small numbers of parameters [5, 9]. Wavefunction
optimization within CASINO is performed by minimizing the
VMC energy or its variance.

Optimizing wavefunctions by minimizing the variance of
the energy is an old idea dating back to the 1930s. The first
application within Monte Carlo methods may have been by
Conroy [77], but the method was popularized within QMC
by the work of Umrigar et al [78]. It is now generally
believed that it is better to minimize the VMC energy than
its variance, but it has proved more difficult to develop robust
and efficient algorithms for this purpose. Since the trial
wavefunction forms used cannot generally represent energy
eigenstates exactly, except in trivial cases, the minima in the
energy and variance do not coincide. Energy minimization
should therefore produce lower VMC energies, and although
it does not necessarily follow that it produces lower DMC
energies, experience indicates that, more often than not, it does.

4.1. Variance minimization

The variance of the VMC energy is

σ 2(α) =
∫ [�α

T (R)]2[Eα
L(R)− Eα

V]2 dR
∫ [�α

T (R)]2 dR
, (29)

where α denotes the set of variable parameters. The minimum
possible value of σ 2(α) is zero, which is obtained if and
only if �α

T is an exact eigenstate of Ĥ . In practice the trial
wavefunction forms used are incapable of representing the
exact eigenstates. Nevertheless, the minimum value of σ 2(α) is
still expected to correspond to a reasonable set of wavefunction
parameters.

Minimization of σ 2(α) is carried out via a correlated
sampling approach in which a set of configurations distributed
according to [�α0

T ]2 is generated, where α0 is an initial set of
parameter values [79]. σ 2(α) is then evaluated as

σ 2(α) =
∫ [�α0

T ]2wα
α0

[Eα
L − Eα

V]2 dR
∫ [�α0

T ]2wα
α0

dR
, (30)

where the integrals contain weights, wα
α0

, given by

wα
α0
(R) = [�α

T ]2

[�α0
T ]2

, (31)

and EV is evaluated using

EV =
∫ [�α0

T ]2wα
α0

Eα
L dR

∫ [�α0
T ]2wα

α0
dR

. (32)

After generating the initial set of configurations, the
optimization proceeds using standard techniques to locate the
new parameter values which minimize σ 2(α). With perfect
sampling σ 2(α) is independent of the initial parameter values
α0. For real (finite) sampling, however, one runs into problems
because the values of wα

α0
for different configurations can vary

by many orders of magnitude if α and α0 differ substantially.
During the minimization procedure a few configurations (often
only one) acquire very large weights and the estimate of the
variance is reduced almost to zero by a poor set of parameter
values. This optimization scheme is therefore often unstable,
and in practice modified versions of it are used.

The above scheme can be made much more stable by
altering the weights wα

α0
. A robust procedure is to set all the

weights wα
α0

in equation (30) to unity, which is reasonable
because the minimum value of σ 2(α) = 0 is still obtained only
if EL(R) is a constant independent of R, which holds only for
eigenstates of the Hamiltonian. We call this the ‘unreweighted
variance’ minimization method. The procedure is cycled until
the parameters converge to their optimal values (within the
statistical noise). For a number of model systems it was
found that the trial wavefunctions generated by unreweighted
variance minimization iterated to self-consistency have a
lower variational energy than wavefunctions optimized by
reweighted variance minimization [80].

If the Jastrow factor of equation (24) can be written in the
form

J (R) =
∑

n

αn fn(R), (33)

then it is possible to simplify the calculation of the variance
of the VMC energy [81, 80]. It can be shown that the
unreweighted variance is a quartic function of the linear
parameters αn [80]. This has two advantages: (i) the
unreweighted variance can be evaluated extremely rapidly
at a cost which depends only on the number of parameters
and is independent of the number of particles; and (ii) the
unreweighted variance along a line in parameter space is a
quartic polynomial. This is useful because it allows the exact
global minimum of the unreweighted variance along the line
to be computed analytically by solving the cubic equation
obtained by setting the derivative equal to zero.

The unreweighted variance minimization method works
well for optimizing Jastrow factors, but it often performs
poorly when parameters which alter the nodal surface of�T are
optimized. The problem is that the local energy EL generally
diverges for a configuration on the nodal surface. As the
parameter values are changed during a minimization cycle the
nodal surface can move through a configuration, resulting in a
very large (positive or negative) value of EL, which adversely
affects the optimization. Such an effect would not occur when
using the weights wα

α0
because they go to zero on the nodal

surface. We have developed two schemes which solve this
problem. In the first scheme we limit the weights by replacing

8



J. Phys.: Condens. Matter 22 (2010) 023201 Topical Review

them with min(wα
α0
,W ), so that the weight goes to zero on the

nodal surface but can never become larger than a chosen value
W . In the second scheme we use a weight which goes smoothly
to zero as EL deviates from an estimate of the energy.

Unreweighted variance minimization belongs to a wider
class of wavefunction optimization methods which are based
on minimizing a measure of the spread of the set of local
energies. Another measure of spread that we have used
with considerable success for wavefunction optimization is
the mean absolute deviation of the local energies of a set of
configurations from the median energy,

M =
∫ [�α0

T (R)]2|Eα
L(R)− Eα

m| dR
∫ [�α0

T (R)]2 dR
. (34)

In this expression, Eα
m is the median value of the local energies

evaluated with the parameter values α. This is useful for
optimizing parameters that affect the nodal surface, because
outlying local energies are less significant.

4.2. Energy minimization

A well-known method for finding approximations to the
eigenstates of a Hamiltonian is to express the wavefunction as
a linear combination of basis states gi ,

�T(R) =
p∑

i=1

βi gi(R), (35)

calculate the matrix elements Hi j = 〈gi |Ĥ |g j〉 and Si j =
〈gi |g j〉, and solve the two-sided eigenproblem

∑
j Hi jβ j =

E
∑

j Si jβ j by standard diagonalization techniques. One can
also do this in QMC [82], although the statistical noise in the
matrix elements leads to slow convergence with respect to the
number of configurations used to evaluate the integrals.

Nightingale and Melik-Alaverdian [83] reformulated the
diagonalization procedure as a least-squares fit rather than
integral evaluation, which leads to much faster convergence
with the number of configurations. Let us assume that the
set {gi} spans an invariant subspace of Ĥ , which means that
the result of acting Ĥ on any member of the set {gi} can be
expressed as a linear combination of the {gi}, i.e.,

Ĥ gi(R) =
p∑

i=1

Ei j g j(R) ∀ i. (36)

The eigenstates and associated eigenvalues of Ĥ can then be
obtained by diagonalizing the matrix Ei j . Within a Monte
Carlo approach we could evaluate the gi(R) and Ĥ gi(R) for
p uncorrelated configurations generated by a VMC calculation
and solve the resulting set of linear equations for the Ei j .
For problems of interest, however, the assumption that the set
{gi} span an invariant subspace of Ĥ does not hold and there
exists no set of Ei j which solves equation (36). If we took
p configurations and solved the set of p linear equations, the
values of Ei j would depend on which configurations had been
chosen. To overcome this problem, a number of configurations
M � p is sampled to obtain an overdetermined set of

equations which can be solved in a least-squares sense using
singular value decomposition. In fact Nightingale and Melik-
Alaverdian recommended that equation (36) be divided by
�T(R) so that in the limit of perfect sampling the scheme
corresponds precisely to standard diagonalization.

The method of Nightingale and Melik-Alaverdian works
very well for linear variational parameters as in equation (35).
The natural generalization to parameters which appear non-
linearly in �T is to consider the basis of the initial trial
wavefunction (g0 = �T) and its derivatives with respect to
the variable parameters,

gi = ∂�T

∂βi

∣
∣
∣
∣
β0

i

. (37)

In its simplest form this algorithm turns out to be highly
unstable because the first-order approximation in equation (37)
is often inadequate. Umrigar and co-workers [84, 85] showed
how this method can be stabilized. The details of the
stabilization procedures are quite involved and we refer the
reader to the original papers [84, 85] for the details. The
stabilized algorithm works well and is quite robust. The VMC
energies given by this method are usually lower than those
obtained from any of the variance-based algorithms described
in section 4.1, although the difference is often small.

5. QMC calculations within periodic boundary
conditions

QMC calculations for extended systems may be performed
using cluster models or periodic boundary conditions, just
as in other techniques. Periodic boundary conditions are
preferred because they give smaller finite size effects. One
can also use the standard supercell approach for systems which
lack three-dimensional periodicity where a cell containing, for
example, a point defect and a small part of the host crystal,
are repeated periodically throughout space. Just as in other
electronic structure methods, one must ensure that the supercell
is large enough for the interactions between defects in different
supercells to be small.

When using standard single-particle-like theories within
periodic boundary conditions such as density functional theory,
the charge density and potentials are taken to have the
periodicity of a chosen unit cell or supercell. The single-
particle orbitals can then be chosen to obey Bloch’s theorem
and the results for the infinite system are obtained by summing
quantities obtained from the different Bloch wavevectors
within the first Brillouin zone. This procedure can also
be applied within HF calculations, although the Coulomb
interaction couples the Bloch wavevectors in pairs. The
situation with the many-particle wavefunctions described in
section 3 is somewhat different. Although the many-particle
wavefunction satisfies Bloch theorems [86, 87], it is not
possible to perform a many-particle calculation using a set
of k-points; one has to perform it at a single k-point. A
single k-point normally gives a poor representation of the
infinite-system result, so that one either chooses a larger non-
primitive simulation cell, or averages over the results of QMC
calculations at a set of different k-points [88], or both.
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Many-body techniques such as QMC also suffer from
finite size errors arising from long-ranged interactions, most
notably the Coulomb interaction. Coulomb interactions
are normally included within periodic boundary conditions
calculations using the Ewald interaction. Long-ranged
interactions induce long-ranged exchange–correlation effects,
and if the simulation cell is not large enough these effects
are described incorrectly. Such effects are absent in local
DFT calculations because the interaction energy is written in
terms of the electronic charge density, but HF calculations
show very strong effects of this kind and various ways to
accelerate the convergence have been developed. The finite
size effects arising from the long-ranged interaction can be
divided into potential and kinetic energy contributions [89, 90].
The potential energy component can be removed from the
calculations by replacing the Ewald interaction by the so-called
model periodic Coulomb (MPC) interaction [91–93]. Recent
work has added substantially to our understanding of finite
size effects, and theoretical expressions have been derived for
them [89, 90], but at the moment it seems that they cannot
entirely replace extrapolation procedures.

Kwee et al [94] have developed an alternative approach for
estimating finite size errors in QMC calculations. DMC results
for the three-dimensional HEG are used to obtain a system-
size-dependent local density approximation (LDA) functional.
The correction to the total energy is given by the difference
between the DFT energies for the finite-sized and infinite
systems. This approach appears promising, although it does
rely on the LDA giving a reasonable description of the system.

6. Pseudopotentials in QMC calculations

The computational cost of a DMC calculation increases with
the atomic number Z of the atoms as roughly Z 5.5 [95, 96]
which makes calculations with Z > 10 extremely expensive.
This problem can be solved by using pseudopotentials to
represent the effect of the atomic core on the valence electrons.
The use of non-local pseudopotentials within VMC is quite
straightforward [97, 98], but DMC poses an additional problem
because the use of a non-local potential is incompatible
with the fixed-node boundary condition. To circumvent
this difficulty an additional approximation is made. In
the ‘locality approximation’ [99] the non-local part of the
pseudopotential V̂nl is taken to act on the trial wavefunction
rather than the DMC wavefunction, i.e., V̂nl is replaced by
�−1

T V̂nl�T. The leading-order error term in the locality
approximation is proportional to (�T − φ0)

2 [99], where φ0

is the exact fixed-node ground-state wavefunction, although it
can be of either sign, so that the variational property of the
algorithm is lost. Casula et al [100, 101] have introduced a
fully variational ‘semi-localization’ scheme for dealing with
non-local pseudopotentials within DMC, which also shows
superior numerical stability to the locality approximation.

Currently it is not possible to generate pseudopotentials
entirely within a QMC framework, and therefore they are
obtained from other sources. There is evidence that HF theory
provides better pseudopotentials than DFT for use within
QMC calculations [102], and we have developed smooth

relativistic HF pseudopotentials for H to Ba and Lu to Hg,
which are suitable for use in QMC calculations [103–105].
Another set of pseudopotentials for use in QMC calculations
has been developed by Burkatzki et al [106]. In the few
cases where reliable tests have been performed [107, 108], the
pseudopotentials of references [103–105] and those of [106]
have produced almost identical results, although those of
references [103–105] are a little more efficient as they have
smaller core radii.

7. DMC calculations for excited states

The fixed-node DMC algorithm is useful for studying excited
states because it gives the exact excited-state energy if the
nodal surface of the trial wavefunction matches that of the
exact excited state and it gives an approximation to the excited-
state energy if a trial wavefunction with an approximate nodal
surface is used.

This can be proved as follows. The local energy calculated
with the exact excited-state wavefunction is equal to the exact
excited-state energy throughout configuration space, and, by
definition, the wavefunction is zero at the nodal surface and
nowhere else. Hence within each nodal pocket the exact
excited-state wavefunction is the ground-state solution of the
Schrödinger equation subject to the boundary condition of
being zero on the pocket boundary. Therefore the ground-
state pocket eigenvalues are all equal to the exact excited-state
energy, and the fixed-node DMC algorithm indeed gives the
exact excited-state energy.

An important difference from the ground-state case is
that the existence of a variational principle for excited-
state energies cannot in general be guaranteed, and
it depends on the symmetry of the trial wavefunc-
tion [109]. In practice DMC works quite well for ex-
cited states [21, 22, 110, 111, 26, 27, 112]. Ceperley and
Bernu [113] have devised a method which combines DMC and
the variational principle to calculate the eigenvalues of several
different excited states simultaneously. However, this method
suffers from stability problems in large systems.

8. Scaling of computational effort with system size

Over the accessible range of system sizes, the computational
cost of a single configuration move in a VMC or DMC
calculation is usually determined by the time taken to evaluate
each of the O(N) orbitals in the Slater part of the wavefunction
at each of the N electron positions [1]. If the delocalized
orbitals are expanded in localized basis functions then the time
taken to move a configuration scales as O(N2). However, the
number of configuration moves required to achieve a given
error bar on the total energy grows as O(N), because the
variance of the energy is proportional to the system size. Hence
the time taken to evaluate the total energy to within a given
statistical error bar scales as O(N3). (Note that the time taken
to evaluate the Slater determinants during the run scales as
O(N4), but with a small prefactor. In fact, for the DMC method
the scaling with system size is ultimately exponential due to
correlations within the configuration population [116].)
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The scaling of the QMC methods can be improved by
using localized orbitals, so that the number of nonzero orbitals
to be evaluated at each electron position is independent of the
system size [114, 115]. In this case the CPU time required to
achieve a given error bar on the total energy scales as O(N2)

over the relevant range of system sizes. To maximize the
localization of the orbitals, the orthogonality constraint can
be dropped, for it is irrelevant in QMC. However, it is not
possible to ‘cheat’ on the size of the orbital localization regions
in QMC, because this would compromise the high accuracy
of the method. (The use of localized orbitals enables the use
of sparse linear algebra to compute the Slater determinants,
improving the scaling of this part of the algorithm by a factor
of N as well.)

In calculations of the energy per particle of a periodic
crystal the number of moves required to achieve a given error
per particle falls off as O(N−1). Hence the CPU time required
to achieve a given error bar on the energy per particle increases
as O(N) in the standard algorithm and is roughly independent
of the system size when localized orbitals are used.

9. Sources of error and statistical analysis

9.1. Sources of error in DMC calculations

The potential sources of errors in DMC calculations may be
summarized as follows.

• Statistical errors. The standard error in the mean is
proportional to 1/

√
M , where M is the number of particles

moves. It therefore costs a factor of 100 in computer
time to reduce the statistical error bars by a factor of
10. On the other hand, a random error is much better
than a systematic one as its size can normally be reliably
estimated.

• Fixed-node error. This is the central approximation of the
DMC technique, and is normally the limiting factor in the
accuracy of the results.

• Time-step bias. The short time approximation leads to a
bias in the f distribution and hence in expectation values.
This bias is often significant and can be of either sign, but
it can be largely removed by performing calculations for
different time steps and extrapolating to zero time step or
by simply choosing a small enough time step. An example
of time-step extrapolation is shown in figure 5.

• Population control bias. The f distribution is represented
by a finite population of configurations which fluctuates
due to branching. The population may be controlled in
various ways, but this introduces a population control
bias which is positive and falls off as the reciprocal of
the population. In practice the population control bias is
normally so small that it is difficult to detect [117, 5].

• Finite size errors within periodic boundary conditions
calculations. It is important to correct for finite size effects
carefully, as mentioned in section 5.

• The pseudopotential approximation inevitably introduces
errors. In DMC there is an additional error arising from
the localization [99] or semi-localization [101] of the non-
local pseudopotential operator. The localization error

Figure 6. Variation in the local energy EL of a silane (SiH4)
molecule as an electron moves through the nodal surface at x = 0.
The local energy diverges as 1/x .

appears to be quite small in the cases for which it has been
tested [71].

9.2. Practical methods for handling statistical errors in QMC
results

Two main practical problems are encountered when dealing
with errors in the QMC data: the data are serially
correlated and the underlying probability distributions are non-
Gaussian. The probability distribution of the local energies has
|E − E0|−4 tails, where E0 is a constant. These tails arise from
singularities in the local energy such as the divergence at the
nodal surface [103, 104], as shown in figure 6. In consequence,
although the mean energy and its variance are well defined,
the variance of the variance is infinity. For other quantities the
problem may be even more severe; for example, the probability
distributions for the Pulay terms in the forces described in
section 11.2 decay as |F − F0|−5/2, so that the variance of
the force is infinity [118]. Reasonably robust estimates of the
errors can still be made, although it has to be accepted that they
are not as well founded as for Gaussian statistics.

The data produced by VMC and DMC calculations are
correlated from one step to the next. The problem is very
important in DMC because short time steps are used to reduce
the effect of the approximation in the Green’s function. The
simulation effectively produces only one independent data
point per correlation time, so that the estimate of the statistical
error obtained on the assumption that the data points are
independent is too small. We use the ‘blocking method’ to
obtain an estimate of the error. In this approach adjacent
data points are averaged to form block averages [119]. This
procedure is carried out recursively so that after each blocking
transformation the number of data points is reduced by one
half. An example of blocking is shown in figure 7. The
computed value of the standard error �k increases with the
number of blocking transformations k until a limiting value is
reached when the block length starts to exceed the correlation
time. The standard error in the mean is estimated by the
value of � on the plateau. Because the sizes of the error
bars on QMC expectation values are themselves approximate
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Figure 7. Blocking analysis of data for an (all-electron) lithium
atom. The blocking analysis indicates that the true standard error in
the mean is about� = 2.6 × 10−5 au, which is reached at about
blocking transformation k = 10, while the raw value is
�0 = 7.0 × 10−6 au

estimates, apparent outliers in QMC data can be more common
than one might expect on the basis of Gaussian statistics.

10. Evaluating other expectation values

As mentioned in section 1, VMC and DMC can be used
to calculate expectation values of many time-independent
operators, not just the Hamiltonian. Typical quantities of
interest are particle densities, pair correlation functions and
one- and two-body density matrices, all of which can be
evaluated using the CASINO code. It is not possible to
obtain unbiased expectation values directly from the DMC
distribution, f (R), for operators which do not commute
with the Hamiltonian (which includes all of the quantities
mentioned in the previous sentence). Unbiased (within the
fixed-node approximation) estimates can be obtained as pure
expectation values,

〈Â〉 =
∫
φ0(R) Âφ0(R) dR

∫
φ2

0(R) dR
. (38)

Pure expectation values can be obtained using a variety of
methods: the approximate (but often very accurate) extrapo-
lation technique [56], the future walking technique [120, 121],
which is formally exact but statistically poorly behaved, and
the reptation QMC technique of Baroni and Moroni [122],
which is formally exact and well behaved, but quite expensive.
The extrapolation technique can be used for any operator, but
the future walking and reptation techniques are limited to spa-
tially local multiplicative operators.

Here we shall illustrate the use of the extrapolation
technique [56] to calculate the charge density of a Wigner
crystal. The pure estimate of the charge density ρ is
approximated as

ρext � 2ρDMC − ρVMC. (39)

The errors in both the VMC and DMC charge densities ρVMC

and ρDMC are linear in the error in the trial wavefunction, but

Figure 8. Charge density of a triangular antiferromagnetic Wigner
crystal at density parameter rs = 30 au, plotted along a line between
a pair of nearest-neighbour lattice sites. Two different wavefunctions
are used: wavefunction 1 was optimized by variance minimization,
while wavefunction 2 was optimized by energy minimization. The
inset shows the extrapolation with wavefunction 1 at the minimum in
greater detail.

the error in the extrapolated estimate ρext is quadratic in the
error in the wavefunction.

At low densities the HEG freezes into a Wigner crystal
to minimize the electrostatic repulsion between electrons. The
charge density of a 2D Wigner crystal [9, 123] close to the
crystallization density is shown in figure 8. VMC, DMC
and extrapolated results are shown for two different trial
wavefunctions. It can be seen that the dependence of the
extrapolated estimate on the trial wavefunction is much smaller
than for the raw VMC and DMC estimates, so we may have
more confidence in the extrapolated estimate of the charge
density.

11. Energy differences and energy derivatives

In electronic structure theory one is almost always interested
in the differences in energy between systems. All electronic
structure methods for complex systems rely for their accuracy
on the cancellation of errors in energy differences. In DMC
this helps with all the sources of error mentioned in section 9
except the statistical errors. Fixed-node errors tend to cancel
because the DMC energy is an upper bound, but even though
DMC often retrieves 95% or more of the correlation energy,
non-cancellation of nodal errors is the most important source
of error in DMC results.

11.1. Energy differences in QMC

Correlated sampling methods allow the computation of
the energy difference between two similar systems with a
smaller statistical error than those obtained for the individual
energies [79]. Correlated sampling is relatively straightforward
in VMC, and a version of it is described in section 4.1 in the
context of optimizing wavefunctions by variance minimization.
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11.2. Energy derivatives (forces) in QMC

Atomic forces are useful for relaxing the structures of
molecules and solids, calculating their vibrational properties,
and for performing molecular dynamics (MD) simulations.
It has proved difficult to develop accurate and efficient
methods for calculating atomic forces within QMC, although
considerable progress has been made in recent years.
Difficulties have arisen in obtaining accurate expressions for
DMC forces which can readily be evaluated and in the
statistical properties of the expressions, which are not as
advantageous as those for the energy.

According to the Hellmann–Feynman theorem (HFT), the
derivative of the energy with respect to a parameter λ in the
Hamiltonian is

E ′ =
∫
� Ĥ ′� dR

∫
� � dR

, (40)

where the primes denote derivatives with respect to λ. This
expression is valid when � is an exact eigenstate of Ĥ .

Unfortunately the HFT is not normally applicable within
QMC because the wavefunctions are approximate. Exact
expressions for the VMC and DMC forces must therefore
contain additional Pulay terms which depend on � ′

T. To
define the force properly it is therefore necessary to define and
evaluate � ′

T.
The DMC algorithm solves for the ground state of the

fixed-node Hamiltonian exactly and therefore the HFT holds.
Unfortunately the fixed-node Hamiltonian is different from the
physical Hamiltonian because it contains an additional infinite
potential barrier on the nodal surface of �T which forces the
DMC wavefunction φ0 to go to zero. As λ varies, the nodal
surface, and hence the infinite potential barrier, moves, giving
a contribution to Ĥ ′ [124–126] which depends on �T and � ′

T
and is classified as a Pulay term.

The Pulay terms arising from the derivative of the mixed
estimate of the energy of equation (21) contain φ′

0, the
derivative of the DMC wavefunction. This quantity cannot
readily be evaluated, and the approximation

φ′
0

φ0
� � ′

T

�T
(41)

has normally been used [127–132, 126, 133, 134]. However,
it leads to errors of first order in (�T − φ0) and (� ′

T − φ′
0);

therefore its accuracy depends sensitively on the quality of �T

and� ′
T, and in practice this approximation is often inadequate.

The pure DMC energy,

ED =
∫
φ0 Ĥφ0 dR

∫
φ0φ0 dR

, (42)

is equal to the mixed DMC energy. Forces may also be
calculated within pure DMC, and although this is more
expensive it brings significant advantages. The derivative
E ′

D contains the derivative of the DMC wavefunction, φ′
0.

However, Badinski et al [126] showed that φ′
0 can be

eliminated from the pure DMC expression, giving the exact
result

E ′
D =

∫
φ0φ0φ

−1
0 Ĥ ′φ0 dR

∫
φ0φ0 dR

− 1

2

∫
φ0φ0�

−2
T |∇R�T|� ′

T dS
∫
φ0φ0 dR

,

(43)

where dS denotes an element of the nodal surface.
Unfortunately it is not straightforward to evaluate integrals
over the nodal surface. The nodal surface integral can be
converted into a volume integral in which φ′

0 does not appear
using an approximation with an error of order (�T − φ0)

2,
giving

E ′
D =

∫
φ0φ0[φ−1

0 Ĥ ′φ0 +�−1
T (Ĥ − ED)�

′
T] dR

∫
φ0φ0 dR

+
∫
�T�T(EL − ED)�

−1
T � ′

T dR
∫
�T�T dR

+ O[(�T − φ0)
2]. (44)

This expression is readily calculable if one generates
configurations distributed according to the pure (φ2

0 ) and
variational (�2

T) distributions. The approximation is in the
Pulay terms, which are smaller in pure than in mixed DMC
and, in addition, the approximation in equation (44) is second
order compared with the first-order error in equation (41).
Equation (44) satisfies the zero variance condition; if �T

and � ′
T are exact the variance of the force obtained from

equation (44) is zero. Equation (44) has been used to obtain
very accurate forces in small molecules [134, 118]. The
calculation of accurate DMC forces is still in its infancy, but
it does appear that equation (44) offers a very promising way
forward.

12. Conclusions

QMC methods provide a framework for computing the
properties of correlated quantum systems to high accuracy
within polynomial time [116], facilitating applications to large
systems. They can be applied to fermions and bosons with
arbitrary inter-particle potentials and external fields. These
intrinsically parallel methods are ideal for utilizing current and
next-generation massively parallel computers. Their accuracy,
generality and wide applicability suggest that they will play an
important role in improving our understanding of the behaviour
of large assemblies of quantum particles.

It is believed [135] that a complete solution to the fermion
sign problem may be impossible, and any exact fermion
method may be exponentially slow on a classical computer.
Accurate quantum chemistry techniques such as the ‘gold
standard’ coupled cluster with single and double excitations
and perturbative triples [CCSD(T)] have been applied with
considerable success to correlated electron problems but,
although they are also polynomial time algorithms, their cost
increases much more rapidly with system size than for QMC
methods. DFT methods have proved extremely useful in
describing correlated electron systems, but there are many
examples where the accuracy of current density functionals
has proved wanting. It is important to remember that trial
wavefunctions for QMC calculations could be improved by
developing new wavefunction forms and better optimization
methods, whereas improving approximate DFT methods
requires the development of better density functionals, which
seems likely to be a much harder problem.

These considerations motivate the development of
approximate QMC methods such as those described in this
review. Although the basics of the DMC algorithm used by
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Ceperley and Alder in 1980 [2] have remained unchanged,
enormous progress has been made in using more complex trial
wavefunctions and in optimizing the many parameters in them.
There is every reason to believe that the current high rate of
progress will continue for many years to come. Although these
QMC methods will remain approximate, it is clear that they can
deliver highly accurate results provided the trial wavefunctions
are accurate enough. Development of sophisticated computer
packages [45] such as the CASINO code [46, 105] should help to
promote these methods.
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